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Abstract. This paper proposes a novel approach for pedestrian re-
identification. Previous re-identification methods use one of 3 approaches:
invariant features; designing metrics that aim to bring instances of shared
identities close to one another and instances of different identities far
from one another; or learning a transformation from the appearance in
one domain to the other. Our implicit approach models camera transfer
by a binary relation R = {(x, y)|x and y describe the same person seen
from cameras A and B respectively}. This solution implies that the cam-
era transfer function is a multi-valued mapping and not a single-valued
transformation, and does not assume the existence of a metric with de-
sirable properties. We present an algorithm that follows this approach
and achieves new state-of-the-art performance.

1 Introduction

The re-identification problem has received increasing attention in the last five
to six years, especially due to its important role in surveillance systems. It is
desirable that computer vision systems will be able to keep track of people after
they have left the field of view of one camera and entered the field of view of the
next, even when these fields of view do not overlap.

We make the distinction between the general re-identification problem, in
which the goal is to re-identify a person in any new location, and the camera-
specific re-identification problem, in which the goal is to provide a solution for
a specific site. In this work we tackle the second goal. Given a pair of stationary
cameras, A and B, capturing two non-overlapping regions, and a training set of
annotated people captured by those two cameras, our objective is to recognize
correspondence between the appearance of a never-before-seen person in camera
A and his or her appearance in camera B. As can be seen in the examples in
Fig. 1, learning the domain of the camera-specific transformations may be very
informative. Each camera is associated with a limited variety of backgrounds,
illumination conditions, and sometimes human poses. We propose an algorithm
that exploits these properties. Our algorithm is based on the observation that the
transfer between two cameras is a multi-valued mapping which can be estimated
using implicit function learning.

Previous re-identification methods have used solutions that belong to one of
three families of methods: those that seek for invariant features; those that seek
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(a) VIPeR examples (b) CAVIAR4REID examples

Fig. 1. (a) Examples from the VIPeR dataset: five people captured by one camera (top
row) and another camera (second row). (b) Examples from the CAVIAR4REID dataset:
three people captured by one camera in multi-shots (top), and the same three people
captured by a second camera (bottom). We see that the background, illumination,
resolution and sometimes pose are camera dependent.

for a metric in which instances associated with the same person are close and
instances associated with different people are far; and those that try to learn a
transformation, i.e., a function, that transfers the descriptors of people as they
’move’ from one camera to the other. Our implicit approach models camera trans-
fer by a binary relation R = {(x, y)|x and y describe the same person seen from
cameras A and B respectively}. This solution implies that the camera transfer
function is a multi-valued mapping and not a single-valued transformation. More-
over, it does not assume the existence of a metric that can bring all instances of
shared identities close to one another and instances of different identities far from
one another. Instead, given a person’s appearance described by a feature vector
of length k, the binary relation models a (not necessarily continuous) sub-space
in R2k. That is, we divide the R2k space to ‘positive’ regions (belonging to the
relation) and ‘negative’ regions (not belonging to the relation). As a result, this
modeling does not build only on a feature-by-feature comparison, but models
also dependencies between different features.

Our algorithm, denoted ICT (short for Implicit Camera Transfer), models
the binary relation by training a (non-linear) binary classifier with concatena-
tions of pairs of vectors, the first describing an instance associated with camera
A, and the second describing an instance associated with camera B. One class in-
cludes the positive pairs – pairs of instances capturing the same person with the
two different cameras, and the second class includes the negative pairs – pairs
of instances whose members are associated with two different people and two
different cameras. This algorithm, although so simple, provides state-of-the-art
results. It can work for single-shots per person as well as for multi-shots (video).

We consider the optimal number of negative examples to use for training and
show that utilizing the more abundant negative examples allows us to learn the
transfer associated with two cameras from rather small sets of inter-camera ex-
ample pairs. The ICT algorithm simultaneously learns to distinguish between
changes that are camera and location dependent and those that depend on
the person’s identity. This allows the use of simple features extracted from the
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bounding boxes surrounding the people, without incorporating high-level, risky,
and time consuming, preprocesses.

In Sec. 2 we review related work, in Sec. 3 we describe the ICT algorithm, and
in Sec. 4 we describe the experiments on the VIPeR [1] and the CAVIAR4REID [2]
datasets. Sec. 5 concludes.

2 Related Work

Object re-identification is a challenge that has been receiving increasing attention
(e.g., face re-identification [3, 4], car re-identification [5]). Person, or pedestrian,
re-identification is a special focus of recent research, mainly due to its important
role in surveillance systems. One common approach proposes invariant features
that are stable to illumination, resolution, pose, and background changes. A
‘same’ or ‘not-same’ decision is then made using some fixed distance measure.
In [6], for instance, normalized color and salient edgel histograms are the basis
for matching segmented parts. In [7] a similarity measure based on principal axis
correspondence is used. In [8] the similarity between two sets of signatures, each
describing a person’s video track, is measured by the width of the margins of a
linear SVM. In [9] features extracted from a person’s track are compacted with
an epitomic analysis that recognizes the presence of recurrent local patterns.
In [10] each semantic body part is described by a signature composed of features
that are stable to changes in pose, viewpoint, resolution and illumination.

Some recent methods focus on learning characteristics of the similarity be-
tween feature vectors describing two instances of the same person against that of
two vectors describing instances of different people. These similarity-based meth-
ods usually use the absolute distance as the characteristic to be learned. The
ELF method [11] models the feature-wise difference distribution using Ada-boost
for feature selection and classification. In [12] it is observed that what matters
is not the similarity itself, but the relative similarity: positive pairs should be
ranked higher than negative pairs. The goal is to weigh the features in a way
that maximizes the difference between absolute differences of negative pairs and
absolute differences of positive pairs. The method in [13] takes a similar approach
using probabilistic modeling. In contrast to these methods, we do not assume
that greater similarity implies ‘same’. Moreover, as opposed to methods that use
the absolute distances as a starting point, or that compare histograms bin-by-
bin, we do not perform a feature-by-feature comparison, and allow dependencies
between any two features in the two input descriptors.

Most of the aforementioned methods try to solve the general re-identification
setup. When two specific cameras are considered, the correlation between the
cameras’ identities and the expected background, illumination, and human pose
may be exploited. The following situation may then be considered: An instance
associated with person i in camera A undergoes a transformation function T and
is then captured as an instance in camera B. In [14] it was shown that the domain
of possible transformations between color histograms lies in a low-dimensional
subspace. This paper is based on modeling the transformation as well. We take a
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different approach and argue that the transformation is a multi-valued function
(or a binary relation). Moreover, unlike the approach in [14], which uses only
positive examples, our approach allows the utilization of negative examples to
better model the transformation domain.

Some methods start with a pre-process for separating the people from the
background (e.g., [8, 6, 10]) and some also attempt to divide the person into se-
mantic parts. For instance, [6] begins with a spatio-temporal segmentation pro-
cess and then searches for correspondence between different segments. In [10],
regions are separated into parts corresponding to head, torso and legs by vertical
asymmetries. In [2] pictorial structures are extracted in order to fit corresponding
body parts. These high-level processes indeed lead to more accurate recognition
but may also lead to mistakes that will then be dragged into the training and
classification stages. In our work we use bounding boxes surrounding the people
and yet achieve very good performance. This is because our algorithm is implic-
itly trained to filter out the background by recognizing the background associ-
ated with each camera as person-independent. This approach is not limited to
re-identifying people as it does not rely on a specific model for their appearance.
As a result, it also allows items carried by the people (e.g., bags) to be used as
cues without additional explicit analysis. Note that high-level semantic analysis
requires processing time that is unlikely to allow real-time performance, while
the method proposed here can be used for real-time re-identification.

3 Implicitly Learning Inter-Camera Transfer

In this section we describe the ICT algorithm. Given that there are two sta-
tionary cameras A and B, covering two non-overlapping regions of a site, our
algorithm is trained to find correspondence between people captured by the two
cameras. Let V A

i,k describe the k’th appearance of a person with identity i cap-

tured by camera A, and let V B
j,l describe the l’th appearance of a person with

identity j captured by camera B. Given a pair (V A
i,k, V

B
j,l), the goal is to distin-

guish between positive pairs with the same identity (i = j), and negative pairs
(i ̸= j). Our algorithm trains a binary classifier using concatenations of such
positive and negative pairs of vectors coming from training data. Then it classi-
fies new such pairs by querying the classifier on their concatenations. See Fig. 2.
A detailed description of the algorithm follows.

The ICT Algorithm

The Training Stage:

The Input:

– A set {V A
i,k|i = 1, ..., n; k = 1, ...,mA

i } of vectors describing instances of n
people captured by camera A.

– A set {V B
i,k|i = 1, ...n; k = 1, ...,mB

i } of vectors describing instances of the
same n people captured by camera B.



Learning Implicit Transfer for Person Re-identification 5

camera A

camera B

F

C

A
kIV ,

B
lJV ,

F

Fig. 2. Illustration of the classification stage of the ICT algorithm. From each of the
instances captured by cameras A and B, features are extracted (F). The concatenation
of those two feature vectors, V A

I,k and V B
J,l, is the input to the classifier C.

That is, for each person and each camera we may be provided with a few de-
scriptor vectors, each associated with his or her appearance in a different video
frame.

Let [a∥b] = (a1, ..., an, b1, ..., bm) denote the concatenation of vectors a =
(a1, ..., an) and b = (b1, ..., bm). The training input for the binary classifier is:

– A set of positive examples {[V A
i,k∥V B

i,l ] |, i ∈ {1, ..., n}, k ∈ {1, ...,mA
i },

l ∈ {1, ...,mB
i }}.

– A set of negative examples {[V A
i,k∥V B

j,l ] |i ̸= j, i, j ∈ {1, ..., n}, k ∈ {1, ...,mA
i },

l ∈ {1, ...,mB
j }}.

For the type of descriptors used and for details about the classifiers used in
our experiments, see Sec. 4. Note that there are

∑n
i=1 m

A
i m

B
i positive examples,

while there is a quadratic number
∑n

i=1

∑n
j=1,j ̸=i m

A
i m

B
j of negative examples.

We do not use all the negative examples but show that even a fraction of them
significantly contribute to the success of the algorithm. See Sec. 4.2.

The Classification/Decision Stage:

The Input:

– A set {V A
I,k|k = 1, ...,mA

I } of vectors describing a person’s track as captured
by camera A.

– A set {V B
J,l|l = 1, ...,mB

J } of vectors describing a person’s track as captured
by camera B.

The Decision: Apply the trained classifier on each of the concatenations [V A
I,k∥V B

J,l],

k = 1, ...,mA
I , l = 1, ...,mB

J . One possibility is to use the binary classifications
and to output a binary decision by their majority. However, more informative
is to output a continuous score that allows different candidate matches to be
ranked. The way to obtain such a score depends on the classifier used. In our ex-
periments we use an SVM as the classifier and output the average of the decision
values: let yk,l, k = 1, ...,mA

I , l = 1, ...,mB
J be the decision values obtained from

the classifier. The algorithm returns the mean Y =
∑mA

I

k=1

∑mB
J

l=1 yk,l/m
A
I m

B
J .
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4 Experiments

After providing additional implementation details (Sec. 4.1), we test ICT’s per-
formance as a function of the number of negative examples utilized for training
(Sec. 4.2). Then we compare its performance to that of the latest state-of-the-art
for the single-shots case on the VIPeR dataset (Sec. 4.3). In Sec. 4.4 we compare
ICT’s performance to that of recent state-of-the-art for multi-shot setups on the
CAVIAR4REID dataset12.

4.1 Implementation Details

Features We use a common and simple description of bounding boxes sur-
rounding the people: each bounding box is divided into five horizontal stripes.
Each stripe is described by a histogram with 10 bins for each of the color com-
ponents H, S, and V. This results in feature vectors with 150 dimensions. We did
not focus on finding optimal features. Any alternative descriptors (e.g., textural
descriptors [13], temporal features [6], or semantic features [2, 10]) can be easily
used as well, and may further improve the algorithm’s performance.

Classifiers We use an RBF kernel binary SVM as the classifier for the concate-
nated vectors. In one of our experiments below we test the use of a one-class-SVM
also with an RBF kernel. We use the implementation provided by LibSVM [16].

Evaluation Methods In the experiments described below we output and com-
pare average Cumulative Match Characteristic (CMC) curves. This is the most
widely accepted way to evaluate re-identification algorithms. For each person
in the test set, each algorithm ranks the matching of his or her appearance in
camera A with the appearances of all the people in the test set in camera B. The
CMC curve summarizes the statistics of the ranks of the true matches. For quan-
titative comparison we use the measure rank(i), which denotes the percentage
of true matches found within the first i ranked instances, the CMC-expectation
measure, which is the mean rank of the true match, and the nAUC (normalized
Area Under Curve).

4.2 The Role of Negative Examples

As mentioned in Sec. 3, the number of negative examples that can be used for
training is quadratic in the number of positive examples. Using all the negative
examples can lead to a strong bias and is computationally expensive. Do we need
all the negative examples? Do we need negative examples at all? In our first set of
experiments we tested the contribution of the negative examples by checking the
algorithm’s performance as a function of the number of negative examples used
for training. These experiments use the VIPeR dataset, the most commonly used

1 The Matlab source code used in all the experiments is available in http://www.cs.

technion.ac.il/~tammya/Reidentification.html.
2 We are aware of the set of data annotated by [15] and corresponding to 119 people
appearing in the i-LIDs videos. That set includes a few instances for each person
without indication of the camera’s identity. It was thus unsuitable for our setup.
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Fig. 3. (a) ICT’s performance on the VIPeR dataset as a function of κ, the number of
negative examples per single positive example, measured by the CMC expectation, the
training time, and the support-vectors used by the SVM. (b) CMC curves comparing
ICT’s results on VIPeR with recent state-of-the-art reported in [2, 10–13].

dataset for evaluating re-identification methods. It contains 632 pedestrian image
pairs. Each pair contains two images of the same individual seen from different
viewpoints by two cameras. See examples in Fig. 1(a). We perform a 2-fold cross-
validation, dividing the 632 pedestrians into equal-size training and test sets. We
repeat this process four times with different random choices for the sets. The
number of positive examples available for training is P = 316 (one concatenated
pair for each person). We test the performance of ICT for different numbers
of negative examples N = κP , where κ = 1, 3, 5, 7, 9, 11, 13, 15, 20, 30. That is,
for each positive example associated with person i, κ of the N − 1 negative
examples involving person i’s appearance in camera A are randomly selected.
Each training involves a parameter learning stage: we learn the optimal c and
γ parameters for the RBF SVM by a 4-fold cross-validation inside the training
set, searching for the parameters that result in the lowest CMC-expectation.

See Fig. 3(a) for ICT’s performance as a function of κ. It reports the CMC
expectation, the training time, and the number of support vectors found by the
SVM. We see that the expectation drops as κ increases, at a high slope for
small κ’s and at an almost zero slope for κ > 15. We also see a similar conver-
gence in the number of support vectors, which means that adding more than a
certain number of negative examples does not add information. Note that the
computation time for training grows linearly with κ. We also tested a variation
of the algorithm that learns only from positive examples using one-class-SVM
(i.e, κ = 0). The one-class SVM test, which followed a similar procedure, yields
a CMC expectation value of 45.6, which is worst than the CMC expectation
achieved by the binary SVM for κ = 1.

We learned that (a) not all negative examples are essential and training
time can be saved by selecting only some of them; (b) the negative examples
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method expectation rank(1) rank(10) rank(20) nAUC

SDALF 25.5 19.9 49.4 65.7 92.2

ELF 28.9 12 44 61 91.2

PS 21.2 21.8 57.2 71.2 93.6

PRDC 21.5 15.7 53.9 70.1 93.5

PRSVM 27.9 14.6 50.9 66.8 91.4

ICT 15.9 14.4 59.7 78.3 95.3

Table 1. Results of ICT on the VIPeR dataset compared to the models in [2, 10–13].

play an important role in compensating for the usually small number of positive
examples, by helping in defining the borders of the “cloud” formed by the positive
transformations.

4.3 Comparing to State-of-the-Art on VIPeR

In order to compare ICT’s performance on the VIPeR dataset with that of recent
work we repeated the above experiment, this time performing cross validations
for 10 random splits, using κ = 30. See Fig. 3(b). The results of the ELF [11]
and the SDALF [10] algorithms were kindly provided by the authors of [10]. The
results of PRDC were kindly provided by the authors of [13]. The results of the
PS based algorithm were kindly provided by the authors of [2]. The results of
PRSVM are those presented in [12]. See Table 1 for a comparison of the CMC
expectation, rank(1), rank(10), rank(20), and nAUC of the different methods.
The CMC-expectation and the nAUC are much better for ICT than for all previ-
ous methods. ICT does not achieve the best rank(1) performance, but performs
best for all ranks 8 and up.

The different measures show different aspects of the algorithm’s performance.
We argue that while the lower ranks are desirable, they are not achievable for the
majority of the cases, which makes the higher ranks and the CMC expectations
at least as important. The few lower ranks only reflect the algorithm’s perfor-
mance on the easy cases, while the CMC-expectation reflects the average human
operator effort, and together with higher ranks, measures the algorithm’s per-
formance for average and difficult cases. The higher ranks on the VIPeR data
may be more relevant for realistic applications in which the set of candidates
contain only a few people. Consider, for example, a common surveillance sce-
nario in which a suspect is recognized as he is captured by a certain camera,
and we wish to continue tracking him. Yet the tracker has lost him because of a
short occlusion, or because he passed through a ‘blind’ area not covered by any
camera. Now, we can define a set of possible candidates for this ‘lost’ suspect.
The number of candidates in such a case will be rather small. Hence, instead of
316 candidates (as tested in the VIPeR experiment setup), we may have, say,
8 candidates on whom we can apply a re-identification algorithm. If we scale
the CMC curves accordingly, we may expect, on the average, that rank(1) for
8 candidates is approximately equivalent to rank(40) for 316 candidates. In this



Learning Implicit Transfer for Person Re-identification 9

2 4 6 8
30

40

50

60

70

80

90

100

RankScore

R
ec

og
ni

tio
n 

P
er

ce
nt

 

 

SDALF
CPS
ICT

5 10 15 20 25

20

40

60

80

100

RankScore

 

 

SDALF
CPS
ICT

(a) Training with 42 people (b) Training with 25 people
and an 8-person test set and a 25-person test set

Fig. 4. CMC curves comparing ICT’s results on CAVIAR4RfEID with those of
SDALF [10] and CPS [2].

case ICT promises 91% success, while the next runner up promises success of
only 84%.

4.4 Comparing to State-of-the-Art on CAVIAR4REID

In this section we compare the performance of ICT with that of state-of-the-
art on the newly released CAVIAR4REID dataset. This dataset includes 50
pedestrians captured by two different cameras. For each person in each camera
there are 10 available appearances. We report results for two setups in Fig. 4,
demonstrating the relative performance as a function of the size of the training
data available. In the first setup (Fig. 4(a)), 42 people are included in the inter-
camera training set and 8 others in the test set. In the second setup (Fig. 4(b)),
the 50 people are equally divided into a training set of 25 and a test set of 25. For
each setup, we average results on 10 random divisions. Our results are compared
to those of SDALF and CPS reported in [2]. In [2] the test set consists of all
50 inter-camera people. We estimated the performance for test sets of 25 and 8
by normalizing the CMC curves reported in [2]3. We see that for training sets
of 25 people our algorithm meets the state-of-the-art performance of CPS, and
outperforms SDALF and CPS for larger training sets. Note that the SDALF and
CPS methods include high-level semantic analysis that requires heavy processing
during the classification stage, while our classification stage includes very basic
feature extraction and classifier calls that can run in real-time.(For instance,
the runtime of an SVM RBF classifier with ∼ 1000 support vectors on one
concatenated vector is 0.8 milliseconds on a standard laptop.)

5 Discussion

This paper considers the re-identification task and contributes the observation
that the transfer between two cameras is a multi-valued mapping (a binary

3 If a person’s true match was rated m among n people, then on the average it will
be ranked (m− 1) ∗ (k − 1)/(n− 1) + 1 among k people.
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relation) which can be estimated using implicit function learning. We show that
utilizing the more abundant negative examples allows us to learn the transfer
associated with two cameras from rather small sets of inter-camera example
pairs. The algorithm yields an extremely fast classifier. We present new state-
of-the-art re-identification performance.

The paper focuses on the camera-specific context, which enables the algo-
rithm to implicitly “filter out” the irrelevant, person-independent, features with-
out high-level semantic analysis. Yet we intend to test the utility of combining
analysis of this sort in our algorithm, with the goal of finding the optimal com-
bination that will bring maximum performance with minimum training.
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